Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Int J Mol Sci ; 23(23)2022 Nov 22.
Artigo em Inglês | MEDLINE | ID: mdl-36498869

RESUMO

Phytophthora infestans, the causal agent of late blight (LB) in tomato (Solanum lycopersicum L.), is a devastating disease and a serious concern for plant productivity. The presence of susceptibility (S) genes in plants facilitates pathogen proliferation; thus, disabling these genes may help provide a broad-spectrum and durable type of tolerance/resistance. Previous studies on Arabidopsis and tomato have highlighted that knock-out mutants of the PMR4 susceptibility gene are tolerant to powdery mildew. Moreover, PMR4 knock-down in potato has been shown to confer tolerance to LB. To verify the same effect in tomato in the present study, a CRISPR-Cas9 vector containing four single guide RNAs (sgRNAs: sgRNA1, sgRNA6, sgRNA7, and sgRNA8), targeting as many SlPMR4 regions, was introduced via Agrobacterium-tumefaciens-mediated transformation into two widely grown Italian tomato cultivars: 'San Marzano' (SM) and 'Oxheart' (OX). Thirty-five plants (twenty-six SM and nine OX) were selected and screened to identify the CRISPR/Cas9-induced mutations. The different sgRNAs caused mutation frequencies ranging from 22.1 to 100% and alternatively precise insertions (sgRNA6) or deletions (sgRNA7, sgRNA1, and sgRNA8). Notably, sgRNA7 induced in seven SM genotypes a -7 bp deletion in the homozygous status, whereas sgRNA8 led to the production of fifteen SM genotypes with a biallelic mutation (-7 bp and -2 bp). Selected edited lines were inoculated with P. infestans, and four of them, fully knocked out at the PMR4 locus, showed reduced disease symptoms (reduction in susceptibility from 55 to 80%) compared to control plants. The four SM lines were sequenced using Illumina whole-genome sequencing for deeper characterization without exhibiting any evidence of mutations in the candidate off-target regions. Our results showed, for the first time, a reduced susceptibility to Phytophtora infestans in pmr4 tomato mutants confirming the role of KO PMR4 in providing broad-spectrum protection against pathogens.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Phytophthora infestans , Solanum lycopersicum , Solanum tuberosum , Solanum lycopersicum/genética , Sistemas CRISPR-Cas/genética , Doenças das Plantas/genética , Phytophthora infestans/genética , Solanum tuberosum/genética , Arabidopsis/genética , Glucosiltransferases/genética , Proteínas de Arabidopsis/genética
2.
Front Plant Sci ; 13: 936089, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35898224

RESUMO

Gene editing has already proved itself as an invaluable tool for the generation of mutants for crop breeding, yet its ultimate impact on agriculture will depend on how crops generated by gene editing technologies are regulated, and on our ability to characterize the impact of mutations on plant phenotype. A starting operational strategy for evaluating gene editing-based approaches to plant breeding might consist of assessing the effect of the induced mutations in a crop- and locus-specific manner: this involves the analysis of editing efficiency in different cultivars of a crop, the assessment of potential off-target mutations, and a phenotypic evaluation of edited lines carrying different mutated alleles. Here, we targeted the GREENFLESH (GF) locus in two tomato cultivars ('MoneyMaker' and 'San Marzano') and evaluated the efficiency, specificity and mutation patterns associated with CRISPR/Cas9 activity for this gene. The GF locus encodes a Mg-dechelatase responsible for initiating chlorophyll degradation; in gf mutants, ripe fruits accumulate both carotenoids and chlorophylls. Phenotypic evaluations were conducted on two transgene-free T2 'MoneyMaker' gf lines with different mutant alleles (a small insertion of 1 nucleotide and a larger deletion of 123 bp). Both lines, in addition to reduced chlorophyll degradation, showed a notable increase in carotenoid and tocopherol levels during fruit ripening. Infection of gf leaves and fruits with Botrytis cinerea resulted in a significant reduction of infected area and pathogen proliferation compared to the wild type (WT). Our data indicates that the CRISPR/Cas9-mediated mutation of the GF locus in tomato is efficient, specific and reproducible and that the resulting phenotype is robust and consistent with previously characterized greenflesh mutants obtained with different breeding techniques, while also shedding light on novel traits such as vitamin E overaccumulation and pathogen resistance. This makes GF an appealing target for breeding tomato cultivars with improved features for cultivation, as well as consumer appreciation and health.

3.
Hortic Res ; 8(1): 241, 2021 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-34719687

RESUMO

In horticulture, grafting is a popular technique used to combine positive traits from two different plants. This is achieved by joining the plant top part (scion) onto a rootstock which contains the stem and roots. Rootstocks can provide resistance to stress and increase plant production, but despite their wide use, the biological mechanisms driving rootstock-induced alterations of the scion phenotype remain largely unknown. Given that epigenetics plays a relevant role during distance signalling in plants, we studied the genome-wide DNA methylation changes induced in eggplant (Solanum melongena) scion using two interspecific rootstocks to increase vigour. We found that vigour was associated with a change in scion gene expression and a genome-wide hypomethylation in the CHH context. Interestingly, this hypomethylation correlated with the downregulation of younger and potentially more active long terminal repeat retrotransposable elements (LTR-TEs), suggesting that graft-induced epigenetic modifications are associated with both physiological and molecular phenotypes in grafted plants. Our results indicate that the enhanced vigour induced by heterografting in eggplant is associated with epigenetic modifications, as also observed in some heterotic hybrids.

4.
Front Plant Sci ; 11: 607161, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33343607

RESUMO

Polyphenol oxidases (PPOs) catalyze the oxidization of polyphenols, which in turn causes the browning of the eggplant berry flesh after cutting. This has a negative impact on fruit quality for both industrial transformation and fresh consumption. Ten PPO genes (named SmelPPO1-10) were identified in eggplant thanks to the recent availability of a high-quality genome sequence. A CRISPR/Cas9-based mutagenesis approach was applied to knock-out three target PPO genes (SmelPPO4, SmelPPO5, and SmelPPO6), which showed high transcript levels in the fruit after cutting. An optimized transformation protocol for eggplant cotyledons was used to obtain plants in which Cas9 is directed to a conserved region shared by the three PPO genes. The successful editing of the SmelPPO4, SmelPPO5, and SmelPPO6 loci of in vitro regenerated plantlets was confirmed by Illumina deep sequencing of amplicons of the target sites. Besides, deep sequencing of amplicons of the potential off-target loci identified in silico proved the absence of detectable non-specific mutations. The induced mutations were stably inherited in the T1 and T2 progeny and were associated with a reduced PPO activity and browning of the berry flesh after cutting. Our results provide the first example of the use of the CRISPR/Cas9 system in eggplant for biotechnological applications and open the way to the development of eggplant genotypes with low flesh browning which maintain a high polyphenol content in the berries.

5.
G3 (Bethesda) ; 10(10): 3557-3564, 2020 10 05.
Artigo em Inglês | MEDLINE | ID: mdl-32817122

RESUMO

Globe artichoke (Cynara cardunculus var. scolymus; 2n2x=34) is cropped largely in the Mediterranean region, being Italy the leading world producer; however, over time, its cultivation has spread to the Americas and China. In 2016, we released the first (v1.0) globe artichoke genome sequence (http://www.artichokegenome.unito.it/). Its assembly was generated using ∼133-fold Illumina sequencing data, covering 725 of the 1,084 Mb genome, of which 526 Mb (73%) were anchored to 17 chromosomal pseudomolecules. Based on v1.0 sequencing data, we generated a new genome assembly (v2.0), obtained from a Hi-C (Dovetail) genomic library, and which improves the scaffold N50 from 126 kb to 44.8 Mb (∼356-fold increase) and N90 from 29 kb to 17.8 Mb (∼685-fold increase). While the L90 of the v1.0 sequence included 6,123 scaffolds, the new v2.0 just 15 super-scaffolds, a number close to the haploid chromosome number of the species. The newly generated super-scaffolds were assigned to pseudomolecules using reciprocal blast procedures. The cumulative size of unplaced scaffolds in v2.0 was reduced of 165 Mb, increasing to 94% the anchored genome sequence. The marked improvement is mainly attributable to the ability of the proximity ligation-based approach to deal with both heterochromatic (e.g.: peri-centromeric) and euchromatic regions during the assembly procedure, which allowed to physically locate low recombination regions. The new high-quality reference genome enhances the taxonomic breadth of the data available for comparative plant genomics and led to a new accurate gene prediction (28,632 genes), thus promoting the map-based cloning of economically important genes.


Assuntos
Cynara scolymus , China , Cynara scolymus/genética , Genoma de Planta , Itália , Recombinação Genética , Tecnologia
6.
Sci Rep ; 10(1): 9189, 2020 06 08.
Artigo em Inglês | MEDLINE | ID: mdl-32514106

RESUMO

Sweet pepper (Capsicum annuum L.) is a high value crop and one of the most widely grown vegetables belonging to the Solanaceae family. In addition to commercial varieties and F1 hybrids, a multitude of landraces are grown, whose genetic combination is the result of hundreds of years of random, environmental, and farmer selection. High genetic diversity exists in the landrace gene pool which however has scarcely been studied, thus bounding their cultivation. We re-sequenced four pepper inbred lines, within as many Italian landraces, which representative of as many fruit types: big sized blocky with sunken apex ('Quadrato') and protruding apex or heart shaped ('Cuneo'), elongated ('Corno') and smaller sized sub-spherical ('Tumaticot'). Each genomic sequence was obtained through Illumina platform at coverage ranging from 39 to 44×, and reconstructed at a chromosome scale. About 35.5k genes were predicted in each inbred line, of which 22,017 were shared among them and the reference genome (accession 'CM334'). Distinctive variations in miRNAs, resistance gene analogues (RGAs) and susceptibility genes (S-genes) were detected. A detailed survey of the SNP/Indels occurring in genes affecting fruit size, shape and quality identified the highest frequencies of variation in regulatory regions. Many structural variations were identified as presence/absence variations (PAVs), notably in resistance gene analogues (RGAs) and in the capsanthin/capsorubin synthase (CCS) gene. The large allelic diversity observed in the four inbred lines suggests their potential use as a pre-breeding resource and represents a one-stop resource for C. annuum genomics and a key tool for dissecting the path from sequence variation to phenotype.


Assuntos
Capsicum/genética , Genoma de Planta/genética , Polimorfismo de Nucleotídeo Único/genética , Alelos , Frutas/genética , Genômica/métodos , Itália , Sequenciamento Completo do Genoma/métodos
7.
PLoS One ; 14(10): e0223581, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31596886

RESUMO

DNA methylation through the activity of cytosine-5-methyltransferases (C5-MTases) and DNA demethylases plays important roles in genome protection as well as in regulating gene expression during plant development and plant response to environmental stresses. In this study, we report on a genome-wide identification of six C5-MTases (SmelMET1, SmelCMT2, SmelCMT3a, SmelCMT3b, SmelDRM2, SmelDRM3) and five demethylases (SmelDemethylase_1, SmelDemethylase_2, SmelDemethylase_3, SmelDemethylase_4, SmelDemethylase_5) in eggplant. Gene structural characteristics, chromosomal localization and phylogenetic analyses are also described. The transcript profiling of both C5-MTases and demethylases was assessed at three stages of fruit development in three eggplant commercial F1 hybrids: i.e. 'Clara', 'Nite Lady' and 'Bella Roma', representative of the eggplant berry phenotypic variation. The trend of activation of C5-MTases and demethylase genes varied in function of the stage of fruit development and was genotype dependent. The transcription pattern of C5MTAses and demethylases was also assessed in leaves of the F1 hybrid 'Nite Lady' subjected to salt and drought stresses. A marked up-regulation and down-regulation of some C5-MTases and demethylases was detected, while others did not vary in their expression profile. Our results suggest a role for both C5-MTases and demethylases during fruit development, as well as in response to abiotic stresses in eggplant, and provide a starting framework for supporting future epigenetic studies in the species.


Assuntos
DNA (Citosina-5-)-Metiltransferases/genética , Regulação da Expressão Gênica de Plantas , Proteínas de Plantas/genética , Tolerância ao Sal , Solanum melongena/genética , DNA (Citosina-5-)-Metiltransferases/metabolismo , Secas , Frutas/genética , Frutas/crescimento & desenvolvimento , Frutas/metabolismo , Regulação da Expressão Gênica no Desenvolvimento , Desenvolvimento Vegetal , Proteínas de Plantas/metabolismo , Solanum melongena/enzimologia , Solanum melongena/crescimento & desenvolvimento , Solanum melongena/metabolismo , Transcriptoma
8.
Sci Rep ; 7(1): 5617, 2017 07 17.
Artigo em Inglês | MEDLINE | ID: mdl-28717205

RESUMO

The genome sequence of globe artichoke (Cynara cardunculus L. var. scolymus, 2n = 2x = 34) is now available for use. A survey of C. cardunculus genetic resources is essential for understanding the evolution of the species, carrying out genetic studies and for application of breeding strategies. We report on the resequencing analyses (~35×) of four globe artichoke genotypes, representative of the core varietal types, as well as a genotype of the related taxa cultivated cardoon. The genomes were reconstructed at a chromosomal scale and structurally/functionally annotated. Gene prediction indicated a similar number of genes, while distinctive variations in miRNAs and resistance gene analogues (RGAs) were detected. Overall, 23,5 M SNP/indel were discovered (range 6,34 M -14,50 M). The impact of some missense SNPs on the biological functions of genes involved in the biosynthesis of phenylpropanoid and sesquiterpene lactone secondary metabolites was predicted. The identified variants contribute to infer on globe artichoke domestication of the different varietal types, and represent key tools for dissecting the path from sequence variation to phenotype. The new genomic sequences are fully searchable through independent Jbrowse interfaces (www.artichokegenome.unito.it), which allow the analysis of collinearity and the discovery of genomic variants, thus representing a one-stop resource for C. cardunculus genomics.


Assuntos
Mapeamento Cromossômico/métodos , Cynara/genética , Genoma de Planta , Análise de Sequência de DNA/métodos , Evolução Molecular , Genótipo , Mutação INDEL , Internet , Mutação de Sentido Incorreto , Melhoramento Vegetal , Polimorfismo de Nucleotídeo Único
9.
Sci Eng Ethics ; 23(2): 631-633, 2017 04.
Artigo em Inglês | MEDLINE | ID: mdl-27349909

RESUMO

When more scientists describe independently the same species under different valid Latin names, a case of synonymy occurs. In such a case, the international nomenclature rules stipulate that the first name to appear on a peer-reviewed publication has priority over the others. Based on a recent episode involving priority determination between two competing names of the same fungal plant pathogen, this letter wishes to open a discussion on the ethics of scientific publications and points out the necessity of a correct management of the information provided through personal communications, whose traceability would prevent their fraudulent or accidental manipulation.


Assuntos
Classificação , Publicações/ética , Fungos/classificação , Revisão por Pares , Má Conduta Científica/ética , Má Conduta Científica/tendências
10.
Plant Signal Behav ; 3(5): 340-1, 2008 May.
Artigo em Inglês | MEDLINE | ID: mdl-19841665

RESUMO

A network of shared intermediates/components and/or common molecular outputs in biotic and abiotic stress signaling has long been known, but the possibility of effective influence between differently triggered stresses (co-protection) is less studied. Recent observations show that wounding induces transient protection in tomato (Solanum lycopersicum L.) to four pathogens with a range of lifestyles, locally and systemically. The contribution of ethylene (ET) in basal but also in wound-induced resistance to each pathogen, although dispensable, is demonstrated to be positive (Botrytis cinerea, Phytophthora capsici) or negative (Fusarium oxysporum, Pseudomonas syringae pv. tomato). Furthermore, the expression of several defense markers is influenced locally and/or systemically by wounding and ET, and might be part of that core of conserved molecular responses whereby an abiotic stress such as wounding imparts co-resistance to biotic stress. In this addendum, we speculate on some of the physiological responses to wounding that might contribute to the modulation of resistance in a more pathogen-specific manner.

11.
Plant Cell Environ ; 30(11): 1357-65, 2007 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-17897407

RESUMO

Many reports point to the existence of a network of regulatory signalling occurring in plants during the interaction with micro-organisms (biotic stress) and abiotic stresses such as wounding. However, the focus is on shared intermediates/components and/or common molecular outputs in differently triggered signalling pathways, and not on the degree and modes of effective influence between abiotic and biotic stresses nor the range of true plant-pathogen interactions open to such influence. We report on local and systemic wound-induced protection in tomato (Solanum lycopersicum L.) to four pathogens with a range of lifestyles (Botrytis cinerea, Fusarium oxysporum f.sp. lycopersici, Phytophthora capsici and Pseudomonas syringae pv. tomato). The role of ethylene (ET) in the phenomenon and in the induction by wounding of several markers of defense was investigated by using the never-ripe tomato mutant plants impaired in ET perception. We showed that PINIIb, PR1b, PR5, PR7 and peroxidase (POD) are influenced locally and/or systemically by wounding and, with the exception of POD activity, by ET perception. We also demonstrated that ET, although not essential, is positively (B. cinerea, P. capsici) or negatively (F. oxysporum, P. syringae pv. tomato) involved not only in basal but also in wound-induced resistance to each pathogen.


Assuntos
Etilenos/metabolismo , Fungos/fisiologia , Doenças das Plantas/microbiologia , Pseudomonas syringae/fisiologia , Solanum lycopersicum/metabolismo , Solanum lycopersicum/microbiologia , Regulação da Expressão Gênica de Plantas , Interações Hospedeiro-Patógeno , Peroxidase/genética , Peroxidase/metabolismo , Folhas de Planta/metabolismo , Folhas de Planta/microbiologia , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Fatores de Tempo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...